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1. SUMMARY

A method has been developed which calculates two-
dimensional, tramnsomnic, viscous flow in ducts. The finite-
volume, time-marching formulation {s used to obtain steady
flow solutions of the Reynolds~averaged form of the Navier
Stokes equations. The entire calculation is performed in the
physical domain.

The features of the current method can be summarized as
follows. Control volumes are chosen so that smoothing of
flow properties, typically required for stability, 1is not
needed. Different time steps are used in the different
governing equations. A new pressure interpolation scheme {is
introduced which improves the shock capturing ability of the
method. A multi-volume method for pressure changes in the
boundary layer allows calculations which use very long' and
thin control volumes (length/height - 1000). The method is
then compared here with two test cases, Essentially incom-
pressible turbulent boundary layer flow in an adverse pres-
sure gradient is calculated and the computed distributions of
mean velocity and shear stress are in good agreement with the
measurements. Transonic viscous flow in a converging diver-
ging nozzle 1is calculated; the Mach number upstream of the
shock 1s approximately 1.25. The agreement between the
calculated and measured shock strength and total pressure
losses 1s good.

2. INTRODUCTION

The finite volume method has been used extensively to
solve the Euler equations for transonic flow including flow
at high Mach numbers. In internal aerodynamics, McDonald [1]
was the first investigator to use the time marching finite
volume method. Denton [2] extended McDonald's finite-volume
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method to three dimensions. Versions of Denton's method have
been used in 1inviscid-viscous {interaction programs for
turbomachinery calculations [3-5].

The scope of the present work was to extend a finite
volume method like that of Denton's to be able to calculate
laminar or turbulent flow in ducts. The new method has the

capability to calculate subsonic as well as transouic flow.

3. GOVERNING EQUATIONS

The unsteady form of the continuity equation, the x-
momentum equation, and the y-momentum equation, in integral
form, are used to obtain a steady-state solution for flow
through 2-dimensional ducts. The 4ideal gas equation of
state, the assumption of constant total temperature, and a
Prandtl mixing length turbulence model complete the governing

equations needed to solve for the unknown variables p, u, v,
P, u, and T.

For a finite control volume where we can assign one
value of density to the control volume, and for a finite time
step, 8t, continuity states that,

pn+1_pﬂ=5p=-[ffpg.di]3%§_l_ (1)

where the 1Integral 1s evaluated explicitly at the current
time step, n. In arriving at an expression which relates the
pressure change directly to the continuity error, we will
assume that changes in temperature are small in comparison to
other changes for one time step. Thus, we can relate changes
in pressure to changes in density through the 1deal gas
equation of state,

PPl _ pM a2 sp = -xr( [/ Pu * dﬁ] 3Vol (2)

For the method introduced in the current work, a non-conser-
vative form of the unsteady momentum equation is used. The
non-conservative form 1s used because it allows the use of
different time steps for the continuity and momentum equa~-
tions., The differences between the non-conservative and
congervative forms of the unsteady momentum equations are
associated with the unsteady and convective terms. Speci-
fically, we note that

3(pu) du
= +V°og_g=pg—t+pg-\79_ (3)
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and the right hand side of Eq. (3) can be rewritten as

32 82
p-5—t+pg'Vg=ort-+V°p_u_g-3(V-pg) (4)

When the right hand side of Eq. (4) is combined with the
pressure and viscous terms, the momentum equation in integral
form becomes

(g_)“"'1 - (" =68() = [-ff puu- dA+u[[ pu- da

Sl oy s+l Wy - )] gy (9)

To maintain stability, the properties must be updated in the

proper sequence. In the current method, the sequence is

1. update the pressure from the continuity equation;

2. update the velocities from the momentum equation using
the new pressure and old velocities and old density;

3. update the density from the ideal gas equation of state;

4. update the temperature from constant total temperature.

4, CONTROL VOLUMES

A new control volume has been Iintroduced for this
method. To eliminate the need for smoothing of flow proper-
ties, there must be as many control volumes across the duct
as there are nodes where these variables are calculated. We
need as many equations as unknowns. The control volumes also
need to be located so that errors in continuity and momentum
can correctly influence the changes in pressure or density
and velocity without smoothing. The current control volume
accomplishes this and 1is shown in Fig. 1. When calculating
the flux through a streamwise face of an element, the value
of the flow properties at the node on that face are used.
Linear interpolation is used to obtain the flux on the cross-
stream face,
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Fig. 1 New Control Volumes



S. DISTRIBUTION OF PROPERTIES

The properties at node points are changed in the flow
field after each time step because the continuity and
momentum equations are not satisfied for a given control
volume. A decision must be made about which node, either
upstream or downstream, these changes should be allocated
to. The criterion used in determining where changes in
properties should be sent 1is that these distributioas result
in reduced errors in continuity and momentum. The current
method uses the following allocation procedure:

1. The pressure is updated through the continuity equation
and the pressure change is sent to the upstream node;

2. The u and v velocities are updated through the momentum
equations and the changes are sent to the downstream
node;

3. The density is updated through the 1deal gas equation of
state using an interpolated pressure.

6. PRESSURE INTERPOLATION PROCEDURE

As part of the updating procedure used by Denton [5], an
effective pressure 1Is used in the momentum equations rather
than the true thermodynamic pressure determined from the
ideal gas equation of state, This effective pressure 1s
needed because 1if the true pressure 1s used in the momentum
equations the solution may not converge. In the current
method, the density used in the continuity and momentum
equations 1s an effective density which may be different thamn
the density obtained using the ideal gas equation of state.
This effective density 1is wused to satisfy stability
requirements.

Starting with a generalized pressure Iinterpolation
equation for the effective density

(Pryy = Prop)

Prep = [Py + 2g(Pyyy = Pp) +a; ) +
. (Pryp = P1-2)] 1 )
b}
2 3 T,

Mach number limitations were sought for ag, 2y and ag such
that

which assures second order accurate solutioms. A set of

equations for ag, 23, and a) was chosen which satisfies two
stability criteria [6]. The equations are
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0.8y r4
for M < 2 ag = (—3-J (;5 -l) ;a1 =1-ag; a;=0:
for M > 2 ag =03 a; = 4/M2 ; ap=1-2a; . (8)

These Mach number dependent formulations for g, a1, and a,
are shown in Fig. 2.
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Fig. 2 Mach Number Dependent Values for
Coefficients apg, aj, and a,

7. TIME STEPS

A unique feature of this method Is the use of different
time steps for the continuity and momentum equatioums.
Previous workers who have used explicit time marching methods
have used the CFL condition as a basis for determining
allowable time steps which maintain stability. The same time
step 1is used for bhoth the continuity and momentum
equations, In the curreant method, the expressions that are
used to determine the allowable time steps are; for the
momentum equations

st < = l (9)
u | o effl + , 2u ‘
= oy p(<5}r)2
and for continuity,
1
Stc < [ 5tm étm - " ] (10)
2RT — + + +
(602  (y)° IRTox| - |RTSy

where Gtm is the momentum time step, §t_ 1s the coantinuity
time step and v is an effective y-component of velocity.
The advantage of using different time steps is that, for low
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velocity regions of the flow, the allowable momentum time
step can be significantly larger than that allowed by the CFL
condition. These larger time steps allow the boundary layer
profiles to change more rapidly and enhance the convergence

rate significantly compared with a method which uses the CFL
condition.

8. BOUNDARY CONDITIONS

For viscous flow, at the upstream boundary, the total
temperature, freestream total pressure, inlet boundary layer
velocity profile, and flow angle are specified. Along the
downstream. boundary the static pressure is specified. Pres-
sures along the so0lid boundaries are determined from linear
extrapolation. For viscous flow, the values of the x-
component and y-component of velocity are set equal to zero
at solid walls.

9, TURBULENCE MODEL

A Prandtl mixing length model is used to model the
turbulent stresses. The model is

u = u + u - 2 nduu

eff L t ut pL a;-

L is smaller of 0.08 times the width of boundary layer
or 0.41 times the distance to the wall

Van Driest Correction
L = 0.41 "y"(1 - exp[~ "y” /p1/26 “g])

‘ = G, Ty
Near Wall Correction ueff uz My + e

10. MULTI-VOLUME METHOD FOR PRESSURE CHANGES

Control volumes are grouped in the boundary 1layer to
form a larger global control volume. The continuity error is
calculated for this global control wvolume and changes in
pressure are assigned equally to each of the upstream nodes
for each control volume making up the global control
volume, Then the global control volume is made successively
smaller towards the wall, This 1is shown schematically in
Fig. 3. The entire pressure change for one iteration at each
node within the multi-volume region is determined by adding
together all the pressure changes assigned to that node.

The multi-volume method propagates pressure changes
rapidly through the boundary layer and minimizes transverse
pressure gradients in the intermediate solution. The above
changes allow the calculation of boundary layer flows where
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the control volumes near the wall can have aspect ratios
(length/height) over 1000.

—— O vt Mttt ) N—

voL. 1 voL. 2 voL. 3 VoL. 4
Fig. 3 Multi-Volume Method for Pressure Changes
in the Boundary Layer

i11. TRANSVERSE UPWIND DIFFERENCING

When the control volumes become long and thin near the
wall of the duct, the fluxes through the top and bottom faces
of the control volume become more significant in comparison
to the fluxes through the streamwise faces. To strengthen
the diagonal dominance of the coefficient matrix, the
momentum fluxes through the transverse faces may be calcu-
lated using interpolated velocities upstream in the
transverse direction rather than the actual interpolated
values. The 1interpolation functions and the derivation of
the functions is discussed in more detail in Ref. 6.

12. SAMUEL AND JOUBERT INCOMPRESSIBLE TURBULENT BOUNDARY
LAYER

Incompressible turbulent boundary layer flow in a
diverging duct was calculated for test case 0141 of the

Stanford Conference [7]. The grid used in the present
calculations is shown in Fig, 4. The inlet velocity is 26
m/s.
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Fig. 4 Geometry and Grid for Samuel and Joubert

Figure 5a shows a comparison of the calculated skin
friction coefficient with the experimental results and with
the results from the Moore cascade flow program. The
agreement Is excellent. A comparison of the calculated
turbulent shear stress distribution, uv, with the experi-
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mental results 1is shown in Fig,

PLOT 1 CASE 0141 FILE 4

5b.

The agreement is good.
Figure 5c¢ shows good agreement also between the calculated
and measured velocity profiles at two locations in the duct.

v

0.006 |
° CFC
o CFPT
o CFFE
o004 1 «  MOORE
e  NICHOLSON
¢ s 112
1 ° ° x*% g -,
0.002 | L TN
- o
]
L]
0000 F | N , " N
1] 0S5 ] -] 2 2.5
X (m)
5a) Skin Friction Coefficient
PLOT 3 CASE 0141 FILE 28,29.30
004 [ 3 x-z.saul X=2.89m T X=3.39m. ]
. a®
. s MOORE
. s S&J DATA
y (m) . . . mcuonso»T
[ )
0.0z | e T e I .: 4
* < .
e $ )
4 > L]
W) i ) °t
000 o o € J.e. 7 laa & p
0‘ 0.0“" 0‘0(‘)2(; _f_lol;‘l 0.0(‘)20l 0.06[ 0;;2
uv/U; -
5b) Turbulent Shear Stresses
PLOT 4 CASE 0141 FILES 14.16
L L 9 J
o.10 X=2.87 @ . X=3.40 m
4 MOORE .
008 F © sSgI DATA , T N
¢ NICHOLSON s .
L ]
Y 0.08 } o 4 o0
L] .
. Py
L .
004 | .« 4 . ]
L] L]
: .o‘o
002 | .'ol -+ .o.
Y ;’ 3
000 | a o"‘z- L 2 .—’!'..
o s _— o5 n
usu,
5¢) Velocity Profiles
Fig. 5 Results for Samuel and Joubert

-66—




13. MDRL DIFFUSER CALCULATIONS

The diffuser geometry (Model G) 1is shown in Figure 6a
(8,91. Figure 6a also shows the computational grid used
which has 87 grid points in the axial direction and 20 poilats
across the flow., The inlet boundary layer thicknesses were
specified as 9% and 4.5% of the inlet diffuser height for the
curved and flat wall boundary layers, respectively. For this
calculation, the ratio of exit static pressure to the inlet
total pressure was 0.826. In the experiment, this test point
results in transonic flow in the diverging portion of the
duct with a Mach number of approximately 1.235 upstream of a
nearly normal shock, and the flow -remained fully-attached
throughout the diffuser at this test condition.

A contour plot of static pressure is shown in Fig. 6b.
The shock can be seen in the diverging portion of the duct.
The shock 1{s well defined as {llustrated by the high
clustering of contours at the shock, Figure 6c shows a Mach
number contour plot for the calculations. The calculated and
measured curved wall static pressures are compared in Fig.
7. The shock is well defined and no overshoot occurs in the
static pressure, r_ x

b
!
1
1
ﬂ

T i
- ki

LIt
+

a) geometry and grid

1N —

c) Mach number contours

Fig. 6 Geometry and Contours for MDRL Diffuser

Measured shock locations on the curved wall and in the
middle of the duct are plotted In Fig., 8 as a function of
shock Mach number, Mo , determined from the minimum wall
static pressures on the curved wall. The minimum wall static
pressure in the calculation 1is located at x/h = 1,5; this {is
taken to be the location of the shock. The Mach number
upstream of the shock was determined to be 1.256 from the
calculated total pressure ratio across the shock 1in the
freestream, This result is plotted in Fig, 8 and it agrees
well with the measured shock location. Comparisons of
calculated and measured velocity profiles (see Ref. 9) at two
axial locations along the duct are shown In Fig, 9. The
agreement 1s good. The mass averaged total pressure at the
diffuser exit divided by the inlet freestream total pressure
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is calculated from the numerical results to be 0.9615. This
compares well with the measured value of 0.965, obtained from
the data of M. Sajben and T. J. Bogar, midway between the
diffuser side walls.

The total CPU time for the MDRL diffuser calculations
was approximately 35 minutes on an IBM 3031.

14. CONCLUSIONS

An explicit finite volume time marching method has been
extended to allow the calculation of laminar and turbulent
flow in ducts, Both subsonic and supersonic flow can be
calculated with the method, Incompressible turbulent
boundary 1layer flow In an adverse pressure gradient was
calculated. The agreement between the calculated and
measured skin friction coefficient, turbulent shear stress
distribution, and mean velocity profiles was good. Transoanic
viscous flow through a converging diverging nozzle was
calculated. The computed and measured velocity profiles were
in good agreement especially near the exit of the nozzle,
The computed and measured shock locations were compared and
were found to be in good agreement. Viscous and shock losses
in the diffuser were well modelled,
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